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CLIMATE SIGNAL AND WEATHER NOISE

C. E. Leith

Lawrence Livermore National Laboratory
Livermore CA USA

ABSTRACT
A signal of small climate change in
either the real atmosphere or a numerical
simulation of it tends to be obscured by
chaotic weather f luctuations.  Time-
lagged covariances of such weather
processes are used to estimate the
sampling errors of time average estimates
of  c l imate  parameters .   Cl imate
s e n s i t i v i t y  t o  c h a n g i n g  e x t e r n a l
influences may also be estimated using
the fluctuation dissipation relation of
statistical mechanics.  Answers to many
climate questions could be provided by a
realistic stochastic model of weather and
cl imate.

1 INTRODUCTION
In any discussion of weather and climate
i t  is ,  f i rs t  of  al l ,  important  to
distinguish clearly the meaning of these
terms.  Climate is usually considered to
be in some sense the average weather.
Here averages will be considered to be
taken over a hypothetical ensemble of
e a r t h s  w i t h  s p e c i f i e d  e x t e r n a l
influences, but each with its own
evolving weather patterns.  If the
external influences are fixed except for a
speci f ied  annual  cycle ,  then  the
resulting climate is expected to be fixed
or stationary except for an induced
annual cycle.  As has been said "Climate
is what you expect, weather is what you
get ."   Thus the cl imate is  the
hypothet ical  probabi l i ty  d is t r ibut ion
from which weather samples are drawn to
produce weather statistics.

There is much current interest in the
possibility that the underlying climate

probabil i ty distr ibution is  changing
owing to changes in external influences
such as changes in concentrations of
greenhouse gases that  change the
radiative properties of the atmosphere or
changes in land surface features that
change the thermal properties of the
earth's surface.  Numerical simulations
of the climate system that generate
artificial but realistic evolving weather
patterns are used to predict the climatic
consequences of artificially imposed
changes in external influences.  Or the
real weather records are examined in a
search for real climate changes induced
by observed real changes in external
inf luences .

Whether examining real or simulated
weather records for evidence of a change
in the climate there is obviously a
sampling problem of distinguishing the
signal of climate change from the noise of
weather statistics.  Enough is known
about the time-lagged covariance of
weather  processes to est imate the
magnitude of the weather noise.  In the
next Section such estimates will be
reviewed.

The observed time-lagged covariance of
weather processes can also be used to
estimate the sensit ivity of cl imate
response without  the  use of numerical
simulations but by making use of the
f luc tua t ion  d iss ipa t ion  re la t ion  of
statistical mechanics.  This relation, as
will be discussed in Section 3, is not
strictly valid for the climate system and
must be treated as an approximation.

The weather sampling problem could, of
course, be avoided if one were to



construct true climate models that deal
d i r e c t l y  w i t h  t h e  p r o b a b i l i s t i c
properties of the climate system r a t h e r
than to require sampling from a weather
model.  Such an approach has been taken
with moderate success in the devising of
stochastic models of turbulence, a far
simpler problem.  In Section 4 is
described a crude stochastic model of the
global atmosphere that captures enough
of the observed space and time statistics
of the weather to provide encouragement
that such an approach may be feasible.

2 WEATHER NOISE
Sampling errors associated with a finite
time average estimate of any weather
variable depend on the time-lagged
covariance of the random process given
by the time series of observations of that
variable.  The point is, of course, that
s u c c e s s i v e  o b s e r v a t i o n s  a r e  n o t
independent and their dependence must
be taken into account.  In application to
climate mean statistics this problem has
been discussed in detail by Leith (1973)
and by Jones (1975).  But a rough
engineering estimate can be made from
the concept of effective time between
independent samples defined as

             S =  ∫ R(t) dt                          (1)

where R(t) is the time-lagged correlation.

For a finite time average based on an
averaging interval T, one finds an
effective number of independent samples
a s

                N = T/S                               (2)

The sampling error variance of the
estimate of the mean is reduced then by a
factor N from the variance of the original
time series.

Since S is observed to be of the order of a
week for weather variables, it is to be
expected, for example, that there will be
sizable fluctuations in seasonal average
temperatures from year to year based
solely on sampling fluctuations with

N=13 even with no change in the
underlying climate probabilities.

This is weather noise, and it tends to
obscure the est imation of  cl imate
probabilit ies whether from the real
atmosphere or from numerical models of
i t .

Spatial averaging does not help much
since spatial correlation lengths are of
the order of a megameter, and this is
typically greater than the size of
regional climate domains of interest.

3 CLIMATE SIGNAL
The key problem in climate system
modeling is the detection of a change in
the underlying climate probabilities in
response  to  chang ing  in f luences ,
especially those induced by human
activities, such as CO2  concentration in
the  a tmosphere ,  o r  land  sur face
proper t i e s .

For the climate system, consider the
symbolic evolution equation

       dx/dt = Q(x) + f(t)                      (3)

where x is a state vector for the system,
Q(x) represents complicated nonlinear
internal dynamical processes and f is a
vector of external forcing influences.  We
assume that there exists a stationary
base climate for which

      <dx/dt> = d<x>/dt = 0                   (4)

where < > indicates the population
expectation.  Without loss of generality
we assume for the base climate that <x> =
0, so that x represents anomalies from
the base climate mean.

The simplest question that can be asked
about  the  c l imate  system is  i t s
sensitivity as given by the infinitesimal
response of <x> to an infinitesimal change
in f, i.e., the l i n e a r  p r o b a b i l i s t i c
response of the mean climate.



We look then for the Greens matrix
function G(t) such that

        δ<x>(t) =  ∫ G(t-s)δ f(s)ds            (5)

Note that an impulsive δ f(0) = fδ ( 0 )
introduced at time t = 0 will induce a
jump in <x> = 0 to <x>(0+) which relaxes
back to the base state by the relation

        <x>(t) = G(t)<x>(0+)                    (6)

The state vector x may, in a typical
numerical model of the atmosphere, have
of order a million components.  The
corresponding Greens matrix provides
the linear response of any one component
to a perturbation in any other.  The
determination of all  of the matrix
e lements  of  G i s  therefore  an
overwhelming task by the usual method
of  making long integrat ions with
numerical models.

In practice, instead of perturbing each
component  separate ly ,  a  col lect ive
perturbation is introduced such as of sea
surface temperature over a domain or of
perturbed heating induced by a change in
C O 2  concentrat ion in the global
atmosphere.

An interesting alternative (Leith, 1975;
Bel l ,  1980)  i s  provided by the
f luc tua t ion  d iss ipa t ion  re la t ion  of
statistical physics which states simply
t h a t

          G(τ) = R(τ ) for τ  ≥  0                   (7)

w h e r e  R ( τ ) = C(0)- 1 C ( τ ) is the
mul t ivar ia te  t ime- lagged  regress ion
matrix for the system, C(τ ) = <x(t)x*(t+τ )>
being the time-lagged covariance matrix.

Although the fluctuation dissipation
relation can be proved as a theorem for
s ta t i s t i ca l  mechan ica l  sys tems  in
t h e r m o d y n a m i c a l  e q u i l i b r i u m ,  t h e
climate system is not one of these, and
the relation must be taken as an
approximation.

It is not yet clear whether such an
approximation,  based af ter  a l l  on
properties of the real atmosphere, is
better or worse than that of devising a
numerical model of the atmosphere.

In any case, as a part of the validation of
any such model, it seems desirable to
check that R(τ ) for the model agrees with
R ( τ ) as observed in the atmosphere, for
otherwise i t  is  unlikely that  the
important Greens matrix, G(τ ), of the
model would agree with that of the real
atmosphere.

Remember that the dimension of the
regression matrix R is great enough to
describe the spatial as well as the
temporal statistical properties of the
atmospheric climate system.

4 STOCHASTIC CLIMATE MODEL
It is tempting to try to devise a
stochastic atmospheric climate model of
the Langevin type, i.e., with random
white forcing and specified damping, that
mimics all first and second moments as
observed in the real atmosphere.  The
fluctuation dissipation relation would be
built into such a model which would thus
provide a crude estimate of climate
sensitivity.  The feasibility of doing so is
suggested by the success of a first crude
step in which the atmosphere is treated
as a homogeneous,  isotropic,  two-
dimensional turbulent fluid with an eddy
mixing of potential vorticity.

Define the potential vorticity as

           q = ∆ ψ  - λ 2ψ                             (8)

where ∆  is the Laplacian operator, ψ  is
the  s t ream funct ion  and λ  is a
deformation wavenumber.  Eddy diffusion
dynamics for the model is given by

          ∂q/∂ t = D∆q - α q + w                (9)

where D is an eddy diffusion coefficient,
α  an eddy damping rate and w is space-
and time-white noise forcing.  For a



particular wavenumber, k, Eqns. (8) and
(9) may be written as

        qk = - (k2 + λ 2)ψk                   (10)

   ∂qk/∂t =  - (Dk2 + α )qk + wk        (11)

The stochastic differential equation (11)
of Langevin type generates stationary
statistics with variance Qk of qk  given by

         Qk = A/(2(α  + Dk2) )

               = (A/2D)/(k2 + µ2)           (12)
In order to maintain parsimony of
parameters it has been found adequate to
s e t

           µ2 = Dα  = λ 2                           (13)

The stream function variance, Ψ k , for
wavenumber k is given by

         Ψk = (A/2D)/(k2 + λ 2)3          (14)

where A is a constant, and the two-
dimensional velocity variance is given by

     U(k) = k2Ψk ≈  k2/(k2 + λ 2)3      (15)

The isotropic energy spectrum has the
shape

  E(k) ≈  kU(k)  ≈  k3/(k2 + λ 2)3       (16)

For x = k/λ , one finds

  E(k)  ≈   f(x) = 8(x + x-1)-3           (17)

which has a maximum at x = 1.  The
transient energy spectrum for the global
atmosphere is observed to have a
maximum at planetary wavenumber k = λ
= 8, and for such a choice of λ  Eqn. (16)
provides a fair fit.

Consider next the temporal statistics, in
particular, the time-lagged height-height
correlation.  In this model this is
proportional to

   π∫kΨ (k) Exp[-(α +Dk2)τ] dk

    = π∫kΨ(k) Exp[-α (1+k2/λ 2)τ ] dk

    ≈   ∫(1+k2 /λ 2 )- 3

                   Exp[-α (1+k2/λ 2)τ ] kdk

     ≈   ∫s-3 Exp[-α τ s] ds = E3(ατ )
                                                        (18)

With suitable normalization, we find

           R(τ) = 2E3(α τ )                       (19)

in terms of the exponential integral, E3 .
A good fit to the observed height-height
correlation is obtained by choosing the
parameter α  = 0.187 /day.

Note that the parameter λ  is first chosen
to fit spatial statistics and then α  is
chosen to fit temporal statistics.  Note
also that in this model the amplitude of
the variance depends only on the
specified strength of the white-noise
forcing.

It is clear that such a model is only a
crude starting point for the development
of models that take into account the
observed three-dimensional mean flow
and the inhomogeneous nature of the real
climate system.
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